GSR and Suppletion in Bolognese Clitics

Edward Rubin \& Aaron Kaplan
University of Utah
e.rubin@utah.edu, a.kaplan@utah.edu
WCCFL 41
May 6, 2023

1 GSRs and Suppletion

- Gradient Symbolic Representations (GSRs; Smolensky \& Goldrick 2016) allow phonological entities to be "partially present" in the input.
- This theory has been shown to account for certain kinds of phonologically conditioned morphological phenomena (Faust \& Smolensky 2017, Zimmermann 2019).
- We apply this framework to clitic allomorphy in Bolognese (Romance; Italy) to assess its ability to account for suppletion.
- Bolognese makes a good test case: DEP penalizes both the appearance of a suppletive allomorph and epenthesis, which sometimes occurs as an alternative to suppletion.

2 Bolognese Clitics

- Bolognese has a fairly standard Romance clitic inventory:
(1) Clitic Pronouns in Bolognese

	NOM		DAT		ACC		PRT
	SING	PLUR	SING	PLUR	SING	PLUR	
1	$\mathrm{a}=/=\mathrm{ja}$	$\mathrm{a}=/=\mathrm{ja}$	m	s	m	s	
2	t	$\mathrm{a}=/=\mathrm{v}$	t	v	t	v	
3 m	$(\mathrm{a}) 1$	i	i	i	(a) 1	i	n
3f	$\mathrm{l}(\mathrm{a})$	$æ l / æ \Lambda$	i	i	$\mathrm{l}(\mathrm{a})$	i	
3RFLX			s	s	s	s	

- Our focus: interaction between allomorphy of 3Ms.NOM and 3Ms.ACC
- Both clitics display suppletion.
- Data in this work comes from Canepari \& Vitali (1995), Vitali (2009), and from extensive work with native speakers.

3 Phonotactics

- Bolognese prohibits sonorant-final coda clusters:
(2) te:vla 'table' te:vel 'tables' layterrna 'lantern' layteren 'lanterns' li:vra 'hare' li:ver 'hares'
- Sonorant-initial onset clusters are also banned (except for a handful of root-internal [mC] clusters; e.g. [mdajay] 'medallion'). None exist underlyingly; epenthesis is visible with clitics:
(3) a. al= le= vad 3Ms.NOM= 3MS.ACC= sees 'he sees him.'
b. al= le= tra 3MS.NOM= 3Ms.ACC= throws 'he throws it.'
- Probably not a sonority sequencing fact (e.g. Clements 1991, Selkirk 1984): clusters that disobey sonority sequencing requirements are not rare (Rubin \& Kaplan to appear):
(4) zbdel 'hospital'
ftleyna 'slice’
tsknoser 'to disavow'
vdand 'seeing'
forbz 'scissors'
pordg 'portico'
- We adopt the following constraint:
(5) *[+ son]PERIPHERY: no sonorant-initial onset clusters or sonorant-final coda clusters.

4 Clitic Allomorphy: The Basics

4.1 3MS.NOM

- Prevocalic: [1] (6)
- Preconsonantal: [al] (7)
(6) 1= arspand 3MS.NOM= responds 'he responds'
(7) $\mathrm{al}=\mathrm{vad}$ 3MS.NOM= sees 'he sees'
\Rightarrow These are suppletive: no regular phonological process in Bolognese accounts for [a] epenthesis/deletion (Rubin \& Kaplan 2022).
- [1] also appears post-verbally (e.g. in questions) with consonant-final verbs. Epenthesis is triggered by *[+son]PERIPHERY, which would not have been necessary with [al]:
(8) vad=el, *vad=al 'Does he see?'
- Our claim: [1] appears to avoid misalignment of [al] with respect to syllable boundaries:
- *[a.l=arspand] (cf. (6)): syllable boundary in the middle of the clitic
- *[va.d=al] (8): clitic is not left-aligned with a syllable boundary
- The cover constraint Align-[al] $]_{N O M}$ penalizes both configurations.
- Ostensibly, a third allomorph [a] occurs before certain ACC and DAT clitics:
a. $a=$
$m=\quad$ la= da
c. a= s= al= da 3MS.NOM 1P.DAT 3MS.ACC gives 'he gives it to us.'
b. $\begin{aligned} & \mathrm{a}=\quad \text { la } \quad \text { da } \\ & \text { 3MS.NOM } \\ & \text { 2s.DAT } \\ & \text { 3FS.ACC gives }\end{aligned}$
'he gives it to you.'
d. a= $\quad \mathrm{v}=\quad \mathrm{al}=\quad \mathrm{da}$ 3MS.NOM 2P.DAT 3MS.ACC gives 'he gives it to you.'
- Rubin \& Kaplan (2022): 3ms.nOM fuses with these (and other) clitics: [am], [as], etc., are single lexical items-"duplexes" that are the exponent of two sets of pronominal features.
- Revisions to (9) with the duplex analysis:
(10)
a. $\begin{aligned} & \mathrm{am}= \\ & \{3 \mathrm{MS} . \text { NOM, } \\ & \text { 1s.DAT }\} \\ & \text { 3FS.ACC gives }\end{aligned}$ 'he gives it to me.'
c. $\mathrm{as}=$
$\mathrm{al}=\quad \mathrm{da}$
b. $\begin{array}{ll}\text { at }= & \text { la }=\quad d a \\ \{3 \mathrm{MS} . \text { NOM, } & \text { 2s.DAT }\} \\ \text { 3FS.ACC gives }\end{array}$ 'he gives it to you.'
d. $\begin{array}{ll}\mathrm{av}= & \mathrm{al}= \\ \text { \{3MS.NOM, } & \text { da } \\ \text { 2P.DAT }\} & \text { 3MS.ACC give }\end{array}$ 'he gives it to you.'
- The duplex analysis explains why [al] occurs preconsonantly instead of the codaless [a], and why [a] appears only before certain clitics and in certain conditions.
- Again, suppletion: duplexes are not morphosyntactically identical to simplex clitics, so they must be separate lexical entries.

4.2 3MS.ACC

- Prevocalic: [1] (11)
- Preconsonantal: [al] (12)
(11) at \quad 1F a d ε
(12) at $=\mathrm{al}=\mathrm{da}$ \{3MS.NOM, 2s.DAT\}= 3MS.ACC= has given 'he gave it to you.'
\{3MS.NOM, 2s.DAT $\}=3 \mathrm{MS} . A C C=$ gives 'he gives it to you.'
- Suppletion, for the same reasons given for 3Ms.nom.
- No duplexes for this 3Ms.ACC clitic.

4.3 Interaction of 3MS.NOM \& 3MS.ACC

- Prevocalic interaction of 3MS.NOM and 3MS.ACC is as expected (13):
- 3MS.ACC \rightarrow [l] (prevocalic environment)
- 3MS.NOM \rightarrow [al] (preconsonantal environment)
(13)
a. al= $\quad \mathrm{l}=\quad$ indvenna

3MS.NOM= 3MS.ACC= guesses
'he guesses it.'
b. al= $\quad \mathrm{l}=\quad \mathrm{a}$ vest

3MS.NOM= 3MS.ACC= has seen
'he saw him.'

- Preconsonantal interaction is unexpected (14): [e] is epenthetic; [1C] onsets are disallowed-a situation that could have been avoided with 3Ms.ACC [al].
a. al= le= vad
3MS.NOM= 3MS.ACC= sees
'he sees him.'
b. $\mathrm{al}=\quad$ le \quad tra

3MS.NOM= 3MS.ACC= throws
'he throws it.'

- A priori expectation: *[l= al= vad]
- 3MS.ACC \rightarrow [al] (preconsontal environment)
- 3MS.NOM \rightarrow [1] (prevocalic environment)
\Rightarrow GSRs can account for this behavior.

5 Analysis

5.1 3Ms.nOM \& Duplexes

- All allomorphs appear in the input.
- Activity is assigned to whole allomorphs, not individual segments.
(15) /(0.1•l, 0.8.al)= vad/

3MS.NOM= sees
'he sees'

- Faithfulness favors allomorphs with greater underlying activity.
- MAX rewards underlying activity preserved in a candidate (roots' activities are ignored in tableaux here).
- DEP penalizes activity that must be added to bring an element's activity up to 1.
(16)

$/(0.1 \cdot 1,0.8 \cdot \mathrm{al})=\mathrm{vad} /$	MAX 5	DEP 15	H
a. l=vad	0.1	-0.9	-13
b. al=vad	0.8	-0.2	1
c. le=vad	0.1	-1.9	-28

- In this case, *[+ son]PERIPH also favors [al=vad]:
(17)

/(0.1-1, $0.8 \cdot \mathrm{al})=\mathrm{vad} /$	$\text { * }[+\underset{37}{\text { son }] \text { PERIPH }}$	$\underset{5}{\text { MAX }}$	$\underset{15}{\text { DEP }}$	H
a. l=vad	-1	0.1	-0.9	-50
* b. al=vad		0.8	-0.2	1
c. le=vad		0.1	-1.9	-28

- Low activity is not fatal, in the right circumstances:
(18)

$/(0.1 \cdot 1,0.8 \cdot$ al $)=$ arspand $/ ~$	ALIGN-[al] ${ }_{N O M}$ 40	$\underset{5}{\text { MAX }}$	DEP 15	H
a. l=arspand		0.1	-0.9	-13
b. a.l=arspand	-1	0.8	-0.2	-39

- High-weighted constraints can favor both a low-activity allomorph and epenthesis over a high-activity allomorph:
(19)

/vad=(0.1-1, 0.8.al)/	$\underset{40}{\operatorname{ALIGN}-[\mathrm{al}]_{N O M}}$	$\star[+\underset{37}{\text { SON }] \text { PERIPH }}$	$\underset{5}{\text { MAX }}$	$\underset{15}{\mathrm{DEP}}$	H
a. vad=1		-1	0.1	-0.9	-50
b. va.d=al	-1		0.8	-0.2	-39
* c. va.d=el			0.1	-1.9	-28

- Duplexes are preferred over simplexes: generally, they're at least optional whenever the morphosyntactic conditions are met.
- Each duplex has an activity lower than the corresponding simplexes. E.g.:
(20) 3Ms.nOM: /(0.1•1, $0.8 \cdot \mathrm{al}, 0.45 \cdot \mathrm{am}, 0.45 \cdot \mathrm{at}$, etc.)/
- Normally, they're suboptimal:
(21)

$/(0.1 \cdot 1,0.8 \cdot \mathrm{al}, 0.45 \cdot \mathrm{at})=\mathrm{vad} /$	MAX 5	DEP 15	H
a. l=vad	0.1	-0.9	-13
b. al=vad	0.8	-0.2	1
c. at=vad	0.45	-0.55	-6

- But if 2 s.DAT, e.g., is also in the input, it contributes another $/ 0.45 \cdot \mathrm{at} /$, and candidates with that allomorph combine the activities of the 3MS.NOM /at/ and 2s.DAT /at/.
(22)

$\begin{aligned} & \text { /(0.1•1, } 0.8 \cdot \mathrm{al}, 0.45 \cdot \mathrm{at})= \\ & (0.3 \cdot \mathrm{t}, 0.45 \cdot \mathrm{at})=\mathrm{la}=\mathrm{da} / \end{aligned}$	$\text { * }[+\underset{37}{\text { SON }] \text { PERIPH }}$	MAX	$\underset{15}{\text { DEP }}$	H
a. l=t=la=da	-1	$0.1+0.3$	-1.6	-59
b. al=t=la=da		$0.8+0.3$	-0.9	-8
- c. at=la=da		$0.45+0.45$	-0.1	3

5.2 3ms.acc \& the Puzzling Interaction

- 3Ms.ACC: [1] prevocalically (23), [al] preconsonantally (24):
(23)

/... (0.95.l, 0.7-al) $=\mathrm{a} \mathrm{da/}$	$\underset{37}{*}[+\underset{3}{\text { SON }] \text { PERIPH }}$	$\underset{5}{\operatorname{MAX}}$	$\underset{15}{\mathrm{DEP}}$	H
- a. ... $=1=\mathrm{ad}$ d		0.95	-0.05	4
b. ...alala d ε		0.7	-0.3	-1
c. ... $=1 \mathrm{e}=\mathrm{a} \mathrm{d} \varepsilon$		0.95	-1.05	-11

/... (0.95.l, 0.7-al)=da/	*[+ SON]PERIPH	MAX	DEP_{15}	H
a. ... $=1=\mathrm{da}$	-1	0.95	-0.05	-33
* b. ... $=\mathrm{al}=\mathrm{da}$		0.7	-0.3	-1
c. ... $=1 \mathrm{le}=\mathrm{da}$		0.95	-1.05	-11

- Interaction between 3MS.NOM and 3MS.ACC: the combined preference for 3MS.NOM [al] and 3MS.ACC [1] is great enough to override other considerations:
(25)

$/(0.1 \cdot 1,0.8 \cdot \mathrm{al})=(0.95 \cdot 1,0.7 \cdot \mathrm{al})=\mathrm{vad} /$	$*[+\underset{37}{\text { SON }] \text { PERIPH }}$	$\underset{5}{\operatorname{MAX}}$	$\begin{gathered} \text { DEP } \\ 15 \\ \hline \end{gathered}$	H
* a. al=le=vad		$0.8+0.95$	-1.25	-10
b. l=al=vad		$0.1+0.7$	-1.2	-14
c. al=1=vad	-1	$0.8+0.95$	-1.25	-47

- GSRs permit an account of Bolognese's suppletion, including the unexpected outcomes and the competition with epenthesis.

6 The Larger Context

- Embedding this analysis in a larger account of Bolognese clitics confirms the results from above.
- Optionality arises in some cases: we adopt Noisy Harmonic Grammar (NHG; Boersma \& Pater 2016, Jesney 2007, Hayes 2017), implemented in R (R Core Team 2022).

6.1 Old Data

- 3MS.NOM with no other clitics ((6) \& (7)):
(26) $\mathrm{l}=$ arspand 3MS.NOM= respond.3s
(27) al= vad 3MS.NOM= see.3s 'he responds' 'he sees'
- Postverbal 3MS.nOM (8):
(28) vad=el 'Does he see?’
- 3MS.NOM duplexes (10); just (10b) included:
(29) at= la= da
\{3MS.NOM, 2s.DAT\} 3FS.ACC give.3s 'he gives it to you.'
- 3MS.ACC prevocalically and preconsonantally ((11) \& (12)):
(30) at=

1F a d ε
(31) at= $\quad \mathrm{al}=\mathrm{da}$ \{3MS.NOM, 2s.DAT $\}=3 \mathrm{MS} . A C C=$ has given 'he gave it to you.'
\{3MS.NOM, 2s.DAT $\}=3 \mathrm{MS} . A C C=$ gives 'he gives it to you.'

- 3MS.NOM with 3MS.ACC ((13)-(14)):
(32) a. al= l= iŋdvenna

3MS.NOM= 3MS.ACC= guesses 'he guesses it.'
b. al= le= vad $3 \mathrm{Ms} . \mathrm{NOM}=3 \mathrm{Ms}$.ACC= sees 'he sees him.'

6.2 New Data

- Duplexes are optional when just one of DAT and ACC clitics is present:
a. $\begin{aligned} & \mathrm{al}= \\ & \text { 3MS.NOM } \mathrm{t}=\quad \text { di:z } \\ & \text { 2S.DAT says }\end{aligned}$
'he says to you.'
(34)
a. $\frac{\mathrm{al}}{3 \mathrm{MS} . \text { NOM }} \frac{\mathrm{s}=}{\text { 1P.DAT says }}$ 'he says to us'
b. $\mathrm{at}=$
di:z \{3MS.NOM, 2s.DAT\} says 'he says to you.'
b. as= di:z \{3MS.NOM, 1P.DAT\} says 'he says to us.'
a. $\begin{aligned} & \mathrm{al}=\quad \mathrm{t}=\quad \text { tsa:ma } \\ & 3 \mathrm{MS} . \text { NOM } 2 \mathrm{~S} . A C C \text { calls }\end{aligned}$ 'he calls you.'
b. at=
tsa:ma
\{3MS.NOM, 2s.ACC\} calls 'he calls you.'
a. $\frac{\operatorname{al}}{\text { 3MS.NOM }}=\frac{\text { sp.ACC calls }}{}$ tsa:ma 'he calls us'
b. as= tsa:ma \{3MS.NOM, 1P.ACC\} calls 'he calls us.'
- Our account:
- Cardinaletti \& Repetti (2008): in Donceto (closely related to Bolognese), proclitics are outside the verb's PWd.
- We implement this by assigning clitics to PPh.
- Recursive PPhs (Ito \& Mester 2007, 2009a,b, 2013): each clitic induces a new one.
- *DUPLEX-PPh ${ }_{\text {min }}$ discourages duplexes in the minimal ($=$ lowest) PPh, competing with MAX and DEP, which favor duplexes (37a), (37b).
- But when both DAT and ACC are present, the duplex is outside the minimal PPh, and *DUPLEX-PPh ${ }_{\text {min }}$ doesn't penalize it (37c).

OK on *DUPLEX- $\mathrm{PPh}_{\text {min }}$; worse on MAX/DEP

OK on both *DUPLEX$\mathrm{PPh}_{\text {min }}$ and MAX/DEP

- With just one of DAT/ACC and a V-initial verb, duplexes are impossible:
(38)
a. $\mathrm{al}=\quad \mathrm{t}=\quad$ arspand 3MS.NOM 2s.DAT responds 'he responds to you.'
b.*at $=$ arspand
(39)
a. $\begin{aligned} & \mathrm{al}=\quad \text { abra日a } \\ & \text { 3MS.NOM 1P.ACC hugs } \\ & \text { 'he hugs us.' }\end{aligned}$
b.* as=abra日a
- Our account:
- OnSET-PWd forces clitics to provide an onset for the verb.
- CrispEdge-PWd (Ito \& Mester 1999) prevents morphemes from straddling the PWd boundary.
- Duplexes must violate one of these constraints; simplexes do not:

/3MS.NOM, 2s.DAT, arspand/	ONSET-PWd	CRISPEDGE-PWd
a. $\mathrm{al}=[\mathrm{t}=\text { arspand }]_{P W d}$		
$\mathrm{~b} . \mathrm{a}[\mathrm{t}=\text { arspand }]_{P W d}$		$*!$
c. $[\mathrm{at}=\text { arspand }]_{P W d}$	$*!$	
$\mathrm{d} . \mathrm{at}=[\text { arspand }]_{P W d}$	$*!$	

- One more constraint: DEP- σ_{1}
- Useful in ruling out extraneous alternations for 3MS.NOM (which is always word-initial, except in inversions).
- DEP- σ_{1} is identical to DEP, but it penalizes only initial-syllable epenthesis.

6.3 Noisy Harmonic Grammar

- Constraint weights are perturbed on each evaluation.
- Code written in R (R Core Team 2022), available at https://github.com/afkaplan/Bolognese
- Noise: Gaussian distribution with mean of 0 and standard deviation of 1
- Weights (41) and activities (42) given below:

(41) | Constraint | Weight |
| :--- | ---: |
| | MAX |

DEP 15
DEP- $\sigma_{1} \quad 28$
*DUPLEX- $\mathrm{PPh}_{\text {min }} 34$
*[+ son]PERIPHERY 37
ONSET-PWd 55
CRISPEDGE-PWd 55

Clitic	Allomorph	Activity
3MS.NOM	[l]	0.1
	[al]	0.8
	duplexes	0.45
3MS.ACC	[l]	0.95
	[al]	0.7
2s.DAT	[t]	0.3
	[at]	0.45
2s.NOM	[t]	0.3

- Results (from 10,000 trials for each form):
- Categorical data: all and only attested forms produced.
- Optional duplexes (33):
* al=t=di:z: 64.8\%
* at=di:z: 35.2\%

7 Conclusion

- GSRs offer an account of suppletive allomorphy without requiring a suppletionspecific apparatus.
- Bolognese uses both [e]-epenthesis and suppletion to satisfy well-formedness constraints, both of which violate DEP. Nonetheless, each appears just where it should.
- NHG accounts for the system's optionality. A possible avenue for research: perturbed activity rather than perturbed weights.

References

Boersma, Paul \& Joe Pater (2016) Convergence Properties of a Gradual Learning Algorithm for Harmonic Grammar. In Harmonic Grammar and Harmonic Serialism, John J. McCarthy \& Joe Pater, eds., 389-434, Bristol, CT: Equinox.
Canepari, Luciano \& Daniele Vitali (1995) Pronuncia e Grafia del Bolognese. Rivista Italiana di Dialettologia 19: 119-164.
Cardinaletti, Anna \& Lori Repetti (2008) The Phonology and Syntax of Preverbal and Postverbal Subject Clitics in Northern Italian Dialects. LI 39(4): 523-563.
Clements, G.N. (1991) Place of Articulation in Consonants and Vowels: A Unified Theory. Working Papers of the Cornell Phonetics Laboratory 5: 77-123.
Faust, Noam \& Paul Smolensky (2017) Activity as an Alternative to Autosegmental Association. Paper presented at the 25th Manchestser Phononology Meeting.
Hayes, Bruce (2017) Varieties of Noisy HG. In Proceedings of AMP 2016, Karen Jesney, Charlie O’Hara, Caitlin Smith, \& Rachel Walker, eds., Washington, DC: Linguistic Society of America.
Ito, Junko \& Armin Mester (1999) Realignment. In The Prosody-Morphology Interface, René Kager, Harry van der Hulst, \& Wim Zonneveld, eds., 188-217, Cambridge, U.K.: Cambridge University Press.
Ito, Junko \& Armin Mester (2007) Prosodic Adjunction in Japanese Compounds. In MIT Working Papers in Linguistics 55: Formal Approaches to Japanese Linguistics 4, Yoichi Miyamoto \& Masao Ochi, eds., 97-111, Cambridge, MA: Dept. of Linguistics and Philosophy, MIT.
Ito, Junko \& Armin Mester (2009a) The Extended Prosodic Word. In Phonological Domains: Universals and Derivations, Baris Kabak \& Jaent Grijzenhout, eds., 135-194, The Hague: Mouton de Gruyter.
Ito, Junko \& Armin Mester (2009b) The Onset of the Prosodic Word. In Phonological Argumentation, Steve Parker, ed., 227-260, London: Equinox.
Ito, Junko \& Armin Mester (2013) Prosodic Subcategories in Japanese. Lingua 124: 20-40.
Jesney, Karen (2007) The Locus of Variation in Weighted Constraint Grammars. Poster presented at the Workshop on Variation, Gradience and Frequency in Phonology. Stanford, CA: Stanford U. July 2007.
R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.
Rubin, Edward \& Aaron Kaplan (2022) Lexical Selection in Bolognese Clitic Allomorphy. Isogloss. Open Journal of Romance Linguistics 8(5): 1-17.
Rubin, Edward J. \& Aaron Kaplan (to appear) Segmental and Prosodic Influences on Bolognese Epenthesis. In Selected Papers from Stony Brook Epenthesis Workshop, Lori Repetti, Ji Yea Kim, Veronica Miatto, \& Andrija Petrovic, eds., LingSci Press.
Selkirk, Elisabeth (1984) On the Major Class Features and Syllable Theory. In Language Sound Structure: Studies in Phonology, Mark Aronoff \& Richard T. Oehrle, eds., 107-136, Cambridge, MA: MIT Press.
Smolensky, Paul \& Matthew Goldrick (2016) Gradient Symbolic Representations in Grammar: The Case of French Liaison. ROA-1286, Rutgers Optimality Archive, http://roa.rutgers.edu.
Vitali, Daniele (2009) Dscårret in bulgnais? Bologna: Perdisa, 2 ed.
Zimmermann, Eva (2019) Gradient Symbolic Representations and the Typology of Ghost Segments. In Proceedings of the 2018 Annual Meeting on Phonology, Katherine Hout, Anna Mai, Adam McCollum, Sharon Rose, \& Matthew Zaslansky, eds., Linguistic Society of America.

