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Introduction

@ Noisy Harmonic Grammar: probabilistic implementations of
Harmonic Grammar (Jesney 2007; Hayes 2017; Flemming 2017;
Zuraw & Hayes 2017).

@ Question 1: How do its properties change when implemented
serially?

@ Question 2: Is it compatible with gradual approaches to
deletion and feature change (McCarthy 2008)?
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Introduction

@ Only one version of NHG supports an analysis of optionality in
Eastern Andalusian harmony in a parallel framework (Kaplan
2018a; Kaplan 2019).

e The harmony-driving constraint in this analysis requires
serialism.

@ Harmony can be implemented gradually.
e Does noise interfere with the necessary sequence of steps?
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Introduction

Two test cases:

e Eastern Andalusian harmony (Jiménez & Lloret 2007;
Lloret & Jiménez 2009; Lloret 2018): the same
implementation of NHG that succeeds in parallel is also the
only one that succeeds in serialism.

e Hiatus resolution in Persian (Ariyaee & Jurgec 2020):
NHG successfully produces gradual vowel deletion; modeling
output frequencies using serial NHG requires revisions to
particular constraints.

Serial NHG closely resembles parallel NHG, but we may need to
rethink our constraints.
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Variable Harmony in Eastern Andalusian

@ /s/-aspiration ( = deletion) causes laxing of word final vowel,
which triggers [FATR] harmony on the stressed syllable:

tesis 'test ‘thesis’ nenes ‘'nene ‘babies’
tienes 'tjene ‘you have' pesos 'peso  ‘weights’
monos 'mond  ‘monkeys’ lejos  'leho  ‘far’
bocas ok  ‘mouths’ asas  'asa  ‘handles’

@ Harmony on other vowels is optional. ..
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Variable Harmony in Eastern Andalusian

@ Nonfinal post-tonic vowels optionally harmonize in lockstep:

treboles 'trefole ~ 'trefole ‘clovers’
cémetelos 'kometelo ~ kometelo  ‘eat them (for you)!"
*kometelo, *'kometelo

@ Likewise for pretonic vowels; post-tonic harmony is a
prerequisite for pretonic harmony:

momentos mo'mento ~ mo'mento ‘instants’
relojes re'lohe ~ re'lbhe ‘watches’
monederos mone'dero ~ mone'dero ‘purses’

*mone'dero, *mone'dero
recégelos  re'kohelo ~ re'kohelo ~ re'kohelo  ‘pick them’
*re'kohelo
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Variable Harmony in Eastern Andalusian

@ But high vowels do not undergo harmony:

crisis keist ‘crisis’
muchos ‘mufo ‘many’
idolos idolo ~ 'idolo ‘idols’
cojines ko'hine ~ ko'hine ‘pillows’

cotillones koti'zone ~ koti'zone ‘cotillions’
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Core Constraints

o LICENSE([-ATR], ): assign +1 for each [-ATR] that
coincides with & and +1 for each additional syllable that

[-ATR] appears in (Kaplan 2018b; Walker 2011).
o Positive constraints require serialism (Kimper 2011).

e CRrISPEDGE([-ATR], 4, L): assign —1 for each syllable to
the left of the stressed syllable with which it shares a [-ATR]
feature (e.g. Ito & Mester 1999; Kaplan 2018c).

@ *[-ATR]: assign —1 for each vowel bearing [-ATR].

@ *[+hi, —ATR]: assign —1 for [1, u].
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NHG: the Mechanics

Add noise to the computation of harmony scores at various levels
(Hayes 2017):

/rekéhelos/ LIC]EiNSE CRIS&%DGE *[fll%]TR] H
a. re'kohelo -1 —11
) D. re koheld + -
(s=) b. re’kohel 2 2 0
=) c. re kohelo + -
‘kohel 3 3 0
=) d. re kohelo + — — —0.
d. re'kohel 4 1 4 0.25
e. re'kohelo +3 -1 -3 —0.25
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NHG: the Mechanics

Add noise to the computation of harmony scores at various levels
(Hayes 2017): constraint (“classical NHG"),

. LicensE_| CRISPEDGE | *[-ATR
/rekéhelos/ L o15 095 [ o +]'3 H
a. re’kohelo -1 113
(s=) b. re’kohelo +2 -2 04
(=) c. rekohelo +3 -3 06
(=) d. re'kohelo +4 -1 —4 =025 +—0.75
e. re'kohelo +3 -1 -3 ;021‘)/ —0.55
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NHG: the Mechanics

Add noise to the computation of harmony scores at various levels
(Hayes 2017): constraint (“classical NHG"), cell,

/rekéhelos/ LIC]EiNSE CRIS&%DGE *[fll%]TR] H
a. re'kohelo 49 gl -l 5| 105
(s=) b. re’kohelo +2 5 7 -2 _ 5 /Q/——>2
(=) c. rekohelo +3 40 L6l 3 gl 27
(=) d. re'kohelo +4 _9 -1 .7 —4 49 ;O%——» —5.35
e. re'kohelo +3 +.2 -1 2 -3 +.6 ;021)“-* —1.25
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NHG: the Mechanics

Add noise to the computation of harmony scores at various levels
(Hayes 2017): constraint (“classical NHG"), cell, or candidate.

/rekéhelos/ LIC]EiNSE CRIS&%DGE *[fll%]TR] H
a. re'kohelo -1 =M 106
(=) b. re'kohel> +2 -2 /g{jﬁ 0.2
(=) c. re’kohelo +3 -3 08
(=) d. re'kohelo +4 -1 —4 ;021)/;% —.55
e. re'kohelo +3 -1 -3 ;0/29/ g 0.65

Also MaxEnt (Goldwater & Johnson 2003)

Only classical NHG noise accounts for Eastern Andalusian in parallel
NHG (Kaplan 2018a; Kaplan 2019); also in serial NHG. ..
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Serial Versions of Constraint-Level Noise

© Constant noise: weights are perturbed once at the outset,
fixing their values for the whole derivation.
Step 1: w(C)+i
Step 2: w(C) +i

@ Variable Noise: weights are perturbed anew at each step in the
derivation.
Step 1: w(C)+i
Step 2: w(C) +j

© Cumulative variable noise: like variable noise, but the starting
point for each step is the perturbed weights from the previous
step.

Step 1: w(C) +i
Step 2: w(C)+ i+
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Simulations

e Existing software (OTsoft (Hayes, Tesar & Zuraw 2013),
OT-Help (Staubs et al. 2010), e.g.) doesn’t support serial
NHG. (But OTSoft can help find constraint weights, as we'll
see.)

e My own implementations, built in R (R Core Team 2020).
Some details:

o Noise was drawn from a normal distribution with mean of 0 and
standard deviation of 1.

o Negative weights were reverted to 0 (following Hayes (2017)).

o In the event of tied winners, one is chosen at random.

@ Results from each implementation were aggregated over 10,000
iterations.

e Weights supplied at the outset.
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Simulations

@ Fell-swoop harmony first.
@ All three constraint-level noise simulations produce the licit

outputs.
o Different frequency predictions, but no way to assess them.

@ Cell- and candidate-level noise and MaxEnt all overgenerate,
unavoidably producing illicit candidates.
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Simulations

Surface Form Frequencies with Different Nosie Types
All and Only Attested Forms Produced

/'kometelos/ | |/mone’deros/| | /koti'30nes/ | | /re'kohelos/ /'krisis/
10000
4+ 75004
5
o 5000+
e LEL L
Ll M i g 2 .
NeJ e O O \J J NORESNA BESNa) .S
£ & FE F LSS <
NS ~° 6\0 @’3(\ © © & @ @
Surface Form
Noise Type . Constant . Variable Cumulative Variable

@ Cumulative Variable: weights are doubled here to prevent

accumulation of weights from subverting necessary dominance
relationships.
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Simulations

Candidate- and Cell-Level Noise and MaxEnt

/'kometelos/ | |/mone'deros/| | /koti'3ones/ | | /re'kohelos/ /'krisis/
10000
s 75004
5
8 5000 4
2500 I '
ke . Hna . Wl .
T T T T T T T T T T T T T T T T T T
\Q}‘) @‘)\Q}’) \q}')\?}f) q}() q}() q}() q,() OQQJ 0{\% 0{\% Q}Q q}’) Q}") rb’) Q}O .\\6’\1
PR I SN S R I I N NN NN A
SLLH @ P @ E RDTRTRT AN
NARVEXVERVENTOING L NN A R

Surface Form

Noise Type . Candidate . Cell

MaxEnt
* = unattested; those with near-zero frequencies (8 tokens) all come from cell-level/MaxEnt
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A Gradual View of Harmony

re'kohelo i> re'kohelo i> re'kohelo i) re'kohelo J

@ How far down this path will we go?
@ What if we treat feature changes, deletion, etc., as multi-step

processes (e.g. McCarthy 2008)?

re'kohelo i> re'kXhelo 3) re'kohelo i) re'kohXlo i> re'kohelo 3>
rX'kohelo g re'kohelo

e X = a V that's both [+ATR] and [-ATR]

@ Now every other step is required. Can we ensure that Step 4
always happens if we choose to do Step 3, e.g.?

o Yes: weight *DOUBLEASSOCIATION high enough that it will

always trigger deletion of [+ATR], even after weights are
perturbed.
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A Stepwise View of Harmony

Stepwise Harmony
Constant Noise

5000

4000 A

3000

Count

2000

1000 o

‘'kometelo ‘komletalo
Surface Form
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Summary: Eastern Andalusian

@ Only constraint-level noise (all versions) provides a satisfactory
analysis.

@ The analysis succeeds with both fell-swoop and gradual
harmony.

@ Turning to Persian, focusing on constraint-level noise:

o Test gradualism more fully
e Match frequency data
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Variable Hiatus Resolution in Persian

@ Hiatus at morpheme boundaries is optionally resolved via
epenthesis or deletion of the suffix-initial V (Ariyaee & Jurgec
2020):

/baba-emun/ — [babaemun ~ babamun ~ baba?emun] 'our dad’
/baba-ef —  [babaef ~ babaf ~ baba?e/] 'his/her dad’
/baba-gem —  [babagm ~ babam ~ baba?sm] 'my dad’

@ If the suffix consists solely of the deleteable vowel, deletion is
strongly disfavored (REALIZEMORPHEME (Kurisu 2001)):

/babae/ — [babae ~ 77?7 /*baba ~ baba?e] ‘the dad’

@ In the absence of hiatus Root + Suffix emerges unchanged:

/deefteer-emun/ — [deftaeremun] ‘our office’
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The Challenges

@ Gradual deletion: can we ensure /babaemun/ — babaVmun —
[babamun], not halting at *[babaVmun]?

e NoHiaTUS

e Satisfied only by the final step in deletion, so it can't motivate

the first step.
o Let's assume NOHIATUS penalizes consecutive fully specified

vowels. Now [babaVmun] satisfies it.

@ REALIZEMORPHEME

e A standard view: as long as a morpheme has some phonological
exponent, REALIZEMORPH is satisfied.
e This will cause problems, and we'll revisit it later.
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e NOHIATUS motivates epenthesis/deletion. (Penalizes [ae], not
[aV].)

e REALIZEMORPHEME discourages deletion in /baba-e/.
e HAVEPLACEV penalizes placeless vowels, motivating V — ().
e HAVEPLACEC penalizes [?], hence penalizes epenthesis.

o Faithfulness:

MAXV (penalizes V — 0) & DEPV (penalizes (§ — V)
MaxC & DEpC

MAXVPLACE (penalizes /e/ — V)

DEPVPLACE (penalizes V — [e])

e No MAXCPLACE or DEPCPLACE: for simplicity, /?/ — [t],
e.g., not considered. Assume DEPCPLACE dominates
everything.
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Variant Frequencies and Derivational Paths

Output variants inferred from graphs in Ariyaee & Jurgec (2020)
using WebPlotDigitizer (Rohatgi 2020):

Surface Form Target
/baba-e/

babae 0.589
baba 0.080
babate 0.331
/baba-emun/

babaemun 0.114
babamun 0.826
babafemun 0.060

/deeftaer-emun/
daeftaeremun 1.000
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Variant Frequencies and Derivational Paths

@ How do we get to these outputs? The simplest approach for
/baba-emun/:

/babaemun/
0.11 0.0 826
babaemun baba?emun babaVmun
1
babamun

@ /baba-e/: same paths, but different proportions due to
REALIZEMORPH—the only constraint that distinguishes
/baba-emun/’s derivations from /baba-e/’s.

@ But REALIZEMORPH doesn't care about Step 1: it penalizes
only /babaV/ — [baba], so the Step 1 proportions must match
those for /baba-emun/. 25/49



Variant Frequencies and Derivational Paths

/babaemun/
0.11 5.0 826

babaemun baba?emun babaVmun
1

babamun

/babae/
0.11 0.0 826

babae baba?e

e What must the probability of /babaV// — [baba] be to reduce

the probability of deletion to .087
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Variant Frequencies and Derivational Paths

/babae/
0.11: 0.06

babae baba?e

@ Probability of convergence on [babal:

0.826x+0.826x(0.826(1—x))~+0.826x(0.826(1—x))-+0.826x(0.826(1—x))3+...

@ The infinite series a+ ar + ar> + ar® + ... = ﬁ Therefore:
0.826x
= .08
1—-0.826(1 — x)
So x ~ 0.018
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Deriving Weights

@ Create OTSoft file with each step in our derivations:

Input Legal Outputs

/baba-e/ babae ~ baba?e ~ babaV

baba?e baba?e

babaV baba ~ babae

/baba-emun/ babaemun ~ baba?emun ~ babaVmun
baba?emun baba?emun

babaVmun babamun

/defteer-emun/  daeftaeremun

@ Probabilities for each candidate match what we saw before for
/baba-e/ and /baba-emun/. For inputs with one possible
output, that output’s probability = 1. All other mappings = 0.
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Deriving Weights

© Submit file to OTSoft's NHG tool (premultiplicative
constraint-level noise). The output:

Constraint Weight Remarks

NoHiATUS 8.75 violated by [babaemun], not [babaVmun]
MAXVPLACE 0.002  violated by /babaemun/ — [babaVmun]
DeprC 6.78 violated by /babaemun/ — [baba?emun]
MaxC 4 violated by /baba?emun/ — [babaemun]
DEpPV 10 violated by /babamun/ — [babaVmun]
MaxV 1.15 violated by /babaVmun/ — [babamun]
HAVEPLACEV 8.31 violated by [babaVmun]

DEPVPLACE 0 violated by /babaVmun/ — [babaemun]

HAVEPLACEC 3.78 violated by [baba?emun]
REALIZEMORPH 10.2 violated by [baba] but not [babV]
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Standard RM & Specialized NoHiatus
Constant Noise

Ibabae/ Repair
babae Elision
baba-{ © I ._'
b€§’€§6: o —o— Epenthesis
g /babaemun/ —o— Faithful
L babaemun A '—. —o= Hiatus
©  babamun - °
5’:% baba?emun-_ﬁ Other
=
n /daeftaeremun/
PropType
deefteeremun A .
® Simulated
0.00 0.25 0.50 0.75 100 @ Target
Frequency
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Target & Simulated Frequencies
Standard RM, Constant Noise

Surface Form Target Simulation
/baba-e/

babae 0.589 0.4479
baba 0.080 0.0045
baba?e 0.331 0.0693
babaV 0.000 0.4783
/baba-emun/

babaemun 0.114 0.4479
babamun 0.826 0.4828
baba?emun 0.060 0.0693

/defter-emun/
daefteeremun 1.000 1.0000
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e Attempts to adjust weights to exclude [babaV] (e.g. by
elevating HAVEPLACEV) also increased the likelihood of
[baba], which quickly becomes the most common output for
/babae/. (It should be the least common.)

@ Perhaps there are weights that work, but | can't find them.
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An Alterative REALIZEMORPH

@ Alternative: match output frequencies at Step 1 as with

/babaemun/:
/babae/
0.58 0.33 .080
babae babafte babaV
1
baba

@ A new conception of REALIZEMORPH: in [babaV], the
exponent of the suffix is a vowel lacking features. Maybe RM
requires a pronounceable exponent for each morpheme.
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An Alterative REALIZEMORPH

REALIZEMORPHEME: assign -1 for each morpheme that does not
have a fully specified phonological exponent. J

@ What does “fully specified” mean? Not sure...let's assume
that [V] doesn’t cut it and worry about the details later.
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An Alterative REALIZEMORPH

@ Once again, using OTSoft to derive weights:

Constraint New Weight Old Weight
NoHiATUS 11.2 8.75
MAXVPLACE 2.74 0.002
DEPC 7.03 6.78
MaxC 3 4

MAXV 0 1.15
HAVEPLACEV 6.74 8.31
DEPVPLACE 5 0
HAVEPLACEC 5.03 3.78

REALIZEMORPH 4.08 10.2
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Alternative RM & Specialized NoHiatus
Constant Noise

Surface Form

/babae/
babae - o
baba 4 (O
baba?e - ‘
/babaemun/
babaemun A
babamun Q
baba?emun - .
/daeftaeremun/
deefteeremun A .
0.25 0.50 0.75 1.00
Frequency

Repair

Elision
—e— Epenthesis
—eo— Faithful

Hiatus

PropType

® Simulated

‘ Target
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An Alterative REALIZEMORPH

Target & Simulated Frequencies
Alternative RM, Constant Noise

Surface Form Target Simulation MaxEnt (A&J)

/baba-e/

babae 0.589 0.6311 0.55
baba 0.080 0.0839 0.14
baba?e 0.331 0.2850 0.31
/baba-emun/

babaemun 0.114 0.1381 0.25
babamun 0.826 0.7881 0.61
baba?emun 0.060 0.0738 0.14

/defter-emun/
daefteeremun 1.000 1.0000 NA
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Other Variants of Constraint-Level Noise

@ The three versions of constraint-level noise are roughly similar:

Surface Form Frequencies with Different Noise Types

Revised RM
/babae/
babae A
baba .
babae 1 D Data/Noise Type
g /babaemun/ O
(e] Target
L bgbgemun 1 N .
abamun 4
3 baba?emun-& O Constant
"‘c“ babaVmun 4
5 e ’ & Variable
(7] efteeremun
/\  Cumulative Var.
deeftaeremun 4 q
T

000 025 050 075 1.0
Frequency

@ Cumulative Variable: doubling weights eliminates illicit outputs,
but frequencies are less accurate. 38/49



Other Variants of Constraint-Level Noise

@ And they all do poorly with the original REALIZEMORPH:

Surface Form Frequencies with Different Noise Types

Original RM
/babae/
babae VA
baba
baba?e 1 QA )
babaV 0 Data/Noise Type
g /babaemun/
o Target
L bta)bgemun 1 % .
abamun
8 baba?emun & O Constant
{:ﬁ babaVmun -
5 <> Variable
(] /daefteeremun/ .
/\  Cumulative Var.
deefteeremun A q

0.00 0.25 0.50 0.75 1.00
Frequency
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The Original REALIZEMORPH isn't all Bad

@ Original RM can model outputs but not frequencies.

@ Abandoning the frequency-matching effort (weights again
derived via OTSoft):

Original RM & Specialized NoHiatus
Constant Noise, no attempt to model frequencies

/babae/
babaeq ©
babaq @
baba?eq{ @ .
Repair
g /babaemun/ .
o Elision
L babaemun-4{ ©
8 babamun- © ® Epenthesis
@© baba?emun4{ @ ]
"% e Faithful
(] /deeftaeremun/ Hiatus
deefteeremun - (¢]
0.4 0.6 0.8 1.0

Frequency 4049



Surface Form Frequencies under MaxEnt
x = A&J MaxEnt Frequencies

/babae/
babae - Oox O
baba 1
baba?e 1
babaV 10 O
S Data/Simulation Type
5 /babaemun/
L babaemun O x O O
® babamun 4 K ‘ Target
O baba?emun A
J’:U babaVmun A O Ait.RM
=1 .
(D] /deeftaeremun/ O Orig. RM
deeftaeremun 4
deefteermun 40

000 025 050 075 1.00
Frequency
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Implications

@ Modeling outputs is easy; matching frequencies is harder.

e Frequencies require refinements to constraints.

@ No frequencies are available for Eastern Andalusian—would the
challenges presented by Persian reemerge in Eastern Andalusian
if we had frequencies?

o Maybe, but there's an important difference between the two
phenomena:
o Persian: which path will we take? (Once that choice is made,
the remainder of the derivation is deterministic.)

o EA: how far down the path will we go? (Just the stressed
syllable? Also post-tonic harmony? Also pretonic harmony?)
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Implications

@ Serial NHG is very similar to parallel NHG. 2 indications:
e The version of parallel NHG that works for Eastern Andalusian
is also the only version of serial NHG that works.
e The weights that OTSoft provides when it thinks serial
derivations are unrelated parallel evaluations hold up serially.
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Remaining Issues

@ Cell- and candidate-level noise?

@ The simulations shown here use only premultiplicative noise:
add noise to weight, then multiply by violations. What about
post-multiplicative noise (for both Eastern Andalusian and
Persian)?

@ A better way to arrive at weights for Persian?
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