Aaron F. Kaplan University of California, Santa Cruz afkaplan@ucsc.edu

Vowel Length and Coda Cluster Interactions in Misantla Totonac¹

1 Introduction

- Some researchers have used phonetic explanations (e.g, Licensing by Cue (Steriade 1997, 1999)) to replace syllabic analyses. I will argue that this approach is inappropriate for at least some phenomena.
- Misantla Totonac (MacKay 1999; henceforth Totonac) shows an interaction between vowel length and coda cluster permissibility that is best analyzed as the product of syllable size constraints.

2 Coda Clusters in Misantla Totonac

- a. <u>Vowels</u>: /i/, /a/, /u/, /i/, /a/, /u/, each with numerous allophones. Their long counterparts are also phonemic.
- b. <u>Consonants</u>:

	Labial	Alveolar	Alveo-palatal	Palatal	Velar	Uvular	Glottal
Stops	р	t			k	q	?
Affricates		$\widehat{\mathrm{ts}}$	t∫				
Fricatives		s, ł	\int				h
Laterals	1						
Nasals	m	n					
Glides	W			j			

• Totonac has two kinds of coda clusters, nasal+stop and stop+fricative:²

Two-Consonant Clusters

- (2) Homorganic nasal plus dorsal stop (/q/, /k/, or /g/):
 - a. *l*>**Nq**.*ftan* 'he/she was cold'
 - b. muu.sii**ŋk** 'cave'
 - c. taŋg.wi.ni? 'money'

⁽¹⁾ Phoneme Inventory (MacKay 1999:30)

 $^{^{1}}$ I'd like to thank the UC Santa Cruz phonology reading group for valuable comments on this paper. Special thanks to Armin Mester, Junko Itô, and Adam Albright.

²There is a third kind of coda cluster, nasal+stop+fricative, which will be addressed below.

Vowel Length and Coda Cluster Interactions in Misantla Totonac

- (3) Stop plus fricative:
 - a. tsa qs 'almost/about to'
 - b. tuu.tfu.tə**qf** 'he/she is lame'
 - c. paqt.tfa 'tomato'
 - d. *?ut paks* 'X is covered with dew'

• But only the nasal+stop clusters appear after long vowels:

- (4) Nasal-Stop Clusters After Long Vowels
 - a. ki.4q**ɔɔng**.nan 'he/she (mouth) snores'
 - b. ?i.flaa.łq**ɔɔʌg**.na 'his/her snores'
 - c. muu.siiŋk 'cave'
 - d. *ki.łq**ɔɔqs**.tsan
 - Nasals do not induce long vowels, either alone or in clusters:
- (5) a. panq.fwa? 'smallpox'
 - b. l_{2Nq} (he/she was cold)
 - c. ta**ŋ**g.wi.**n**i? 'money'
 - d. hə**ŋ**kukutał 'DET oak grove'
 - e. mi**ŋ**ka**maŋ** 'your children'
 - The ungrammaticality of (4d) compared to (3) suggests that Totonac has a maximal syllable size. A VCC rime is acceptable, but VVCC is not.
 - But VVCC is fine if CC = nasal+stop. How can we account for this fact? What are the differences between these two kinds of clusters?
 - Throughout the language, nasals assimilate in [place] to following consonants (MacKay 1999). The nasal+stop clusters are all homorganic.
- (6) Nasal Assimilation
 - a. $/\min\text{-paj-ni}/ \rightarrow \min\text{pajni}$ 'your pig'
 - b. $/\min$ -ku \int -muu-ni $/ \rightarrow mi\eta$ ku \int muun 'your chest'
 - c. $/lunq-ftan/ \rightarrow lonq/ftan$ 'he/she was cold'
 - d. $(a\mathbf{n}-kan-la4) \rightarrow 2a\mathbf{y}kanla4$ 'someone went'
 - e. $/kin-puli-Vt/ \rightarrow kimpulit$ 'my sweat'
 - In contrast, stop+fricative clusters cannot be homorganic. Every stop+fricative coda cluster is composed of consonants with different Place features (MacKay 1999).
 - Only dorsal stops ([k] and [q], plus their voiced allophones) appear in coda clusters (both nasal-stop and stop-fricative). [k] only appears with [s], and there are no phonemic uvular fricatives. Homorganicity is impossible in stop-fricative clusters.
 - From this point of view, it looks like Totonac allows only one Place feature to appear after long vowels. Two Place features are acceptable after short vowels.

3 Limiting Syllable Sizes

- Syllables in Totonac have three rime "slots." A short vowel leaves room for two coda consonants (i.e., Place nodes), but a long vowel only leaves room for one consonant (again, a Place node).
- We need constraints limiting syllable size:

(7) *3
$$\mu$$
: * c
 μ μ

• This is a commonly assumed constraint; languages have two-way weight contrasts but rarely three-way contrasts.

(8) Non-Branching Moras: $*\mu$

μ

- NON-BRANCHING MORAS is in the spirit of WEIGHT BY POSITION: it penalizes rime segments that don't bear their own moras.
- These constraints limit syllables to maximally two moraic segments. All rime segments after these two moraic segments must appear in a non-moraic position at the right edge of the syllable. We can call them "Tail" segments.
- (9) limits syllables to a single Tail segment.
- (9) *COMPLEX(Tail): Consonant clusters within the Tail are banned.
 - *COMPLEX(Tail) captures the triple markedness of Tail clusters: they are codas, they are non-moraic, and they are clusters.
 - With these three constraints, we end up with the maximal syllable in (10) (cf. Selkirk (1982)):
- (10)

(11) When ranked over MAX and DEP, VCC rimes are permitted:

$/\widehat{tsaqs}/$ 'almost/about to'	$*3\mu$	NON-BRANCHING MORAS	*Complex(Tail)	Max	Dep
$rad{tsa}_{\mu}q_{\mu}s_{T}$		1	1		1
b. $\widehat{\mathrm{tsa}}_{\mu}\mathrm{q}_{\mu}\mathrm{s}_{\mu}$	*!	1	1		I
c. $\widehat{\mathrm{ts}}[aq]_{\mu}\mathrm{s}_{\mu}$		*!	 		l I
d. $\widehat{\text{ts}}_{\underline{a}\mu}[\text{qs}]_T$		1	*!		
e. tsaq		1		*!	
f. tsa.qis					*!

/t͡sa̯aqs/	$*3\mu$	Non-Branching Moras	*Complex(Tail)	Max	Dep
a. $\widehat{\mathrm{tsa}}_{\mu} a_{\mu} q_{\mu} s_T$	*!	1	1		1
b. $\widehat{\mathrm{tsa}}_{\mu}[\operatorname{aq}]_{\mu}\mathrm{s}_T$		*!	 		1
c. $\widehat{\mathrm{tsa}}_{\mu} a_{\mu} [\mathrm{qs}]_T$		1	*!		
$rac{rac}{rac}$ d. $\widetilde{\mathrm{tsa}}_{\mu} a_{\mu} q_T$		1		*	1
re. tsaµaµ.qis		- 	I		*

(12) But VVCC rimes are ruled out:

- As it stands, nasal+stop clusters are ruled out after long vowels, too.
- To allow nasal+stop clusters but not stop+fricative clusters, constraints must be sensitive to Place specifications. Essentially, we want constraints that identify segments by their Place nodes so that homorganic clusters are counted as single segments:
- (13) *COMPLEX(Tail)_[Place]: Within a syllable, multiple Place nodes are banned in the Tail.
 - But this opens the door for identification of segments by any feature: *COMPLEX(Tail)_[distributed] and *COMPLEX(Tail)_[lateral]. Unless we can single out Place nodes as special in some way, this approach is dangerous.
 - Itô & Mester (1993) argues that a segment is licensed only if both its Root and Head are licensed. Roots are equated with root nodes, and a segment's Head is just its Place node. Place nodes are therefore unique within feature geometry.
 - The constraints used so far have equated segments with Roots, but there's no reason we can't use Heads instead:
- (14) *COMPLEX(Tail)_H: Within a syllable, multiple Heads are banned in the Tail.
 - The only difference between (14) and (9) is that one identifies segments by their Roots and the other uses Heads.
 - Since nasal-stop clusters share a single Place node, they will not be penalized by $*COMPLEX(Tail)_H$.
- (15) Nasal+stop clusters are now allowed in the Tail:

/muusiiŋk/ 'cave'	$*3\mu$	Non-Branching Moras	*COMPLEX(Tail) _{H}	MAX	Dep
$rad a. muu.sii[ŋk]_T$		r I			
b. muu.siik _{T}		1	1	*!	
c. muusiiŋ.ki					*!

• How does this fit in with the rest of Totonac's coda facts?

4 Other Phonotactics

4.1 Fricatives

- Given a choice, fricatives are syllabified as onsets, forming onset clusters where necessary. Fricative+C clusters are the only onset clusters in Totonac:
- (16) Onset Clusters
 - a. *spat* 'soil/earth'
 - b. sta.ku 'star'
 - c. sqp.nah 'warm'
 - d. sla.pox 'soft'
 - e. smaax.smaax.wan 'he/she cries'
 - f. $\int ka d$ 'he/she bit X'
 - g. *lak.fnuun* 'he/she stretches X'
 - h. *4ta.ta* 'he/she sleeps'
 - i. tɔq.4wan 'he/she hiccoughs'
 - But there are two exceptions to this generalization.
 - Consecutive fricatives are disallowed. The first fricative deletes (MacKay 1999:56):
- (17) Fricative Deletion
 - a. $(i \int -\frac{1}{2} tuk) \rightarrow i \cdot \frac{1}{2} tuk$ 'his/her thorn'
 - b. $/i \int -\int iila / \rightarrow i \int ii.la$ 'his/her chair'
 - c. /ik-tsuqus- $\int waaq \rightarrow ik.tsp.qp.\int weex$ 'I scratch X's knee'
 - d. /ik-ki4-stak-nan/ $\rightarrow i.ki.stak.nan$ 'my mouth is healing'
 - e. $/kid-dquunq-nan/ \rightarrow ki.dqppng.nan$ 'he/she (mouth) snores'
 - Fricative+affricate sequences can't be syllabified together. The fricative becomes a coda, and the affricate becomes an onset:³
- (18) Fricative-Affricate Syllabification
 - a. $(i\mathbf{f}-\mathbf{fs}) = \frac{1}{2} \frac$
 - b. $(\widehat{\text{tsaqs-tfan}}) \to \widehat{\text{tsaqf.tfan}} \to \widehat{\text{tsaqf.tfan}}$ 'he/she was about to sow X'
 - This phenomenon is important because it bears on where fricatives are syllabified, and therefore it influences the distribution of stop+fricative clusters.
 - It is an OCP effect (Leben 1973, 1978; Goldsmith 1976; McCarthy 1986; Myers 1997).
- (19) OCP(strid): Within a syllable, adjacent strident segments are banned.
 - OCP(strid) forces fricative+affricate sequences to be heterosyllabic. It is never violated, so I rank it alongside the syllable-size constraints.

 $^{^{3}}$ The fricative also undergoes place assimilation, taking on the Place feature of the affricate. I do not analyze this process here.

(20)

/i∫-t͡salan/ 'you sprout'	OCP(strid)	$*3\mu$	NBM	*COMPLEX(Tail) _{H}	Dep	Max
a. i.stsa.lan	*!	I	1	1		
☞b. is.tsa.lan		 	 			
c. i.tsa.lan		 	1	1		*!
d. i.∫i.tsa.lan		1	1		*!	

• Since fricatives are syllabified as onsets wherever possible, only fricative+affricate sequences will yield fricative codas. Consequently, all word-internal stop+fricative coda clusters will be followed by an affricate.

4.2 Nasal Place Assimilation

- Recall that nasals undergo place assimilation when followed by a consonant. For our purposes, (21) is a suitable constraint.
- (21) AGREE(place): Nasals agree in place with following consonants.
 - It is never violated, so it is undominated.
- (22) OCP(strid), AGREE(place), *3 μ , Non-Branching Moras, *Complex(Tail)_H \gg Dep, Max
- (23) Nasal+stop clusters are permitted after long vowels, provided the cluster is homorganic:

/iJ-laa-4quunq-na/ 'his/her snores'	OCP(str)	Agr	$*3\mu$	NBM	*COMP(Tail) _{H}	Dep	MAX
a. $2i. \int a. 4q_{22} [n_{g}]_T .n_{g}$		*!	l	l	*!		ı I
$rac{1}{2}$ b. $2i.$ Jlaa. $4q22[NG]_T.na$			 	 	 		
c. $2i$. Jaa. $4q$ $23G_T$. na		l	I	l	1		*!

(24) But stop+fricative clusters are banned after long vowels. The fricative is syllabified as an onset if possible:

/i∫-laa-łquuqs-na⁄	OCP(str)	AGR	$*3\mu$	NBM	*COMPLEX(Tail) _{H}	Dep	Max
a. $2i \operatorname{laa.}q_{22}[qs]_T.n_a$		I	l	l	*!		
$rac{}$ b. ?i.flaa.4qəəq _T .sna		 					
c. ?i.ſlaa. $4q_{22}q_T$.na		 		1	1		*!
d. ?i.ſlaa.łqɔɔ.qis.na		l				*!	

(25) But deletion or epenthesis is preferred where this option is unavailable (hypothetical input):

/i∫-laa-łquuqs-t∫a/	OCP(str)	AGREE	$*3\mu$	NBM	$*COMPLEX(Tail)_H$	Dep	MAX
a. $2i.$ Jlaa. $4qpp[qs]_T.$ $t ja$		 	1 	 	*!		1
b. $2i.$ Jlaa. $4q_{22}q_T.st f_a$	*!						1
\mathfrak{F} c. ?i.ʃlaa.łqɔɔq _T .tj̃			1	1			*
☞d. ?i.ſlaa.łqɔɔ.qis.t͡ʃa					1	*	1

5 Triconsonantal Clusters

• If we can identify segments by their Heads, we predict a third kind of coda cluster:

(26)

- With homorganic nasal-stop clusters under the second mora (and thus not violating a Head-oriented NON-BRANCHING MORAS), the Tail is free for another consonant.
- This Tail could be a fricative: We know that stop+fricative coda sequences are acceptable in Totonac, so we might suppose that nasal+stop+fricative clusters are licit.
- (27) This is a correct prediction: *nah.lax.tfanqf* 'he/she will chop' is attested.

(28)

/nal-lak-t∫anq∫/	OCP(str)	AGREE	$*3\mu$	NBM_{H}	$*COMPLEX(Tail)_H$	Dep	MAX
$radia a. nah.la\chi.tja[nq]_{\mu}j_T$		 	 	 			
b. nah.la χ .t \widehat{f} a $\aleph_{\mu}q_{T}$			1				*!
c. nah.la χ .t \hat{f} a.niq $_{\mu}f_{T}$			1			*!	

6 Alternative Analyses

- Sonority Sequencing (Fudge 1969; Selkirk 1984; Clements 1990) can't account for the long-vowel asymmetry. If stop+fricative clusters are licensed by sonority considerations after short vowels, it's unclear how this might change after long vowels.
 - Sonority Sequencing just compares adjacent segments. It can't compare strings of more than two segments, and it's not clear how vowel length would be taken into consideration.

- Licensing by Cue (Steriade 1997, 1999) is also unsatisfactory. Stop+fricative could be ruled out if the cues for one segment are suppressed.
 - But after long vowels, these cues should be more salient compared to post-shortvowel contexts. Stop+fricative clusters should be preferred after long vowels. If anything, Licensing by Cue makes the wrong predictions.

7 English

- The constraints developed here are also relevant to English.
- After long vowels, only coronal clusters are permitted (Selkirk 1982): *find* [faind] vs. **fimp* [faimp]. This could be accounted for by modifying *COMPLEX(Tail) to rule out only non-coronal clusters, perhaps as a reflection of the unmarkedness of coronals.
- There are many biconsonantal coda clusters that can't be combined into monomorphemic triconsonantal clusters:
- (29) Unattested Tautomorphemic Three-Consonant Coda Clusters in English

Unatte	ested Cluster	Attested Pairs
[rnd]	*harnd	warn, hand
[rnt]	*pirnt	warn, pint
[rnt͡]	*warnch	warn, inch
[rnd3]	*rarnge	warn, range
[rmp]	* farmp	farm, limp
[rlk]	* pearlk	pearl, milk
[rŋk]	*irnk	warn, ink
$[r\eta(g)]$	*sirng	$warn, \ sing$

• This is a consequence of limiting rimes to three segments, perhaps using Roots instead of Heads here.

8 Conclusion

- Misantla Totonac shows an interaction between coda cluster permissibility and vowel length: only a subset of the language's coda clusters appear after long vowels.
- This is best analyzed as a symptom of syllable size limitations that interact with other phonotactic constraints in the language.
- Rather than limiting syllable size in a stipulative manner (cf. Fudge (1969); Selkirk (1982); Borowsky (1986)), the analysis proposed here uses constraints that are motivated by more general markedness considerations.
- The syllable-size analysis has applications beyond Misantla Totonac.

References

- Borowsky, Toni (1986) Topics in the Lexical Phonology of English. Ph.D. thesis, University of Massachussets, Amherst.
- Clements, George N. (1990) The Role of the Sonority Cycle in Core Syllabification. In Papers in Laboratory Phonology 1: Between the Grammar and Physics of Speech, John Kingston & Mary Beckman, eds., 283–333, New York: Cambridge University Press.
- Fudge, E. C. (1969) Syllables. Journal of Linguistics 5: 193–320.
- Goldsmith, John (1976) Autosegmental Phonology. Ph.D. thesis, MIT.
- Itô, Junko & Armin Mester (1993) Licensed Segments and Safe Paths. Canadian Journal of Linguistics 38(2): 197–213.
- Leben, Will (1973) Suprasegmental Phonology. Ph.D. thesis, MIT.
- Leben, Will (1978) The Representation of Tone. In *Tone: A Linguistic Survey*, Vicki Fromkin, ed., 177–220, New York: Academic Press.
- MacKay, Carolyn J. (1999) A Grammar of Misantla Totonac. Salt Lake City, Utah: The University of Utah Press.
- McCarthy, John (1986) OCP Effects: Gemination and Antigemination. *Linguistic Inquiry* 17: 207–263.
- Myers, Scott (1997) OCP Effects in Optimality Theory. Natural Language and Linguistic Theory 15: 847–892.
- Selkirk, Elisabeth (1982) The Syllable. In *The Structure of Phonological Representations*, Harry van der Hulst & Norval Smith, eds., Cinnaminson, N.J.: Foris Publications.
- Selkirk, Elisabeth (1984) On the Major Class Features and Syllable Theory. In Language and Sound Structure, Mark Aronoff & Richard T. Oehrle, eds., Cambridge, Massachusetts: MIT Press.
- Steriade, Donca (1997) Phonetics in Phonology: The Case of Laryngeal Neutralization, University of California, Los Angeles.
- Steriade, Donca (1999) Alternatives to the Syllabic Interpretation of Consonantal Phonotactics. In Proceedings of the 1998 Linguistics and Phonetics Conference, Osamu Fujimura, Brian D. Joseph, & Bohumil Palek, eds., 205–242, The Karolinum Press.