Licensing and Noniterative Harmony in Lango

Aaron Kaplan

UC Santa Cruz

afkaplan@ucsc.edu

NELS 37 October 13, 2006

Iterativity

- "Sour grapes": Typical Optimality Theoretic (OT; Prince & Smolensky 1993[2004]) constraints driving whole-word processes are unsuited for less comprehensive processes (Padgett 1995, McCarthy 2003, 2004):
 - AGREE (Lombardi 1999, Baković 2000)
 - ALIGN (McCarthy & Prince 1993, Kirchner 1993, Cole & Kisseberth 1995, Pulleyblank 1996)
 - SPREAD (Padgett 1997, Walker 2000), etc.
- Many rule-based theories (e.g. Jensen & Strong-Jensen 1976, Archangeli & Pulleyblank 1994): By turning an iterativity parameter off, analyses for whole-word processes can be used for shorter processes.

- ⇒ What does it mean to be (non)iterative? Is it a problem that OT can't unite iterative and noniterative phenomena under a single analysis?
 - The OT approach is correct: there are no purely noniterative phenomena (Kaplan 2006).
 - Vowel harmony: an apparent case of noniterative harmony is best analyzed as a product of Positional Licensing (Steriade 1994a,b, Zoll 1998a,b, Itô & Mester 1999, Crosswhite 2000), not standard harmony drivers.
 - cf. Walker (2004): The harmonizing feature in Tudanca Spanish is attracted to stress.

Noniterative ATR Harmony in Lango

- Lango is a Nilotic language spoken in Uganda. (Data from Woock & Noonan (1979), Noonan (1992), Smolensky (2006))
- [+ATR] vowels: *i*, *e*, *u*, *o*, ∂ Their [-ATR] correspondents: *i*, *e*, *v*, *o*, *a*
- ATR spreads from roots to suffixes (prefixes don't harmonize):

(1) Harmony with /-Ca/ '1sg inalienable'

Harmony with /-Co/ 'infinitive'

(2)

a. $\langle \hat{\mathbf{o}} p \hat{\mathbf{u}} \mathbf{k} + \mathbf{C} \hat{\mathbf{a}} /$ $\rightarrow \hat{\mathbf{o}} p \hat{\mathbf{u}} \mathbf{k} \mathbf{k} \hat{\mathbf{a}}$ 'my cat'(cf. $d \hat{\mathbf{c}} \mathbf{k} \mathbf{k} \hat{\mathbf{a}}$ 'my stew')b. $/ p \hat{\mathbf{i}} g + \mathbf{C} \hat{\mathbf{a}} /$ $\rightarrow p \hat{\mathbf{i}} g g \hat{\mathbf{a}}$ 'my juice'(cf. $\hat{\mathbf{o}} t t \hat{\mathbf{a}}$ 'my house')

a. /lwsk + Co/ \rightarrow lwskbaa'to wash'(cf. ringo 'to run')b. /lvb + Co/ \rightarrow lvbba'to follow'(cf. ketto 'to put')

• Harmony is blocked under certain phonotactic conditions (see Appendix and Smolensky 2006):

• [+ATR] can spread regressively:

(4) Harmony with /-ni/ '2sg possessive,' /-wú/ '2pl possessive'

a.	$/k \acute{o}m + n \acute{i}/$	$ ightarrow \mathrm{komm}$ í	'your chair'
b.	$/\mathrm{d}\hat{\mathbf{\epsilon}}\mathbf{k} + \mathrm{n}\hat{\mathbf{i}}/$	$\rightarrow d\dot{e}kk\dot{i}$	'your stew'
c.	$/ ext{ply} + ext{wu}/$	→ pi̇̀ŋwú́	'your (pl) name'

• But [+ATR] only targets the root-final vowel:

- Noniterativity is epiphenomenal: It results from a Positional Licensing constraint that interacts with Faithfulness constraints to produce harmony that does minimal violence to the input.
- Reasons to be be suspicious of a harmony analysis:
 - Most roots are harmonic, but a few aren't (6).
 - Root-affix harmony creates disharmonic stems (5). It looks like root harmony is no longer active.

(6)	a.	c <mark>ú</mark> pá	'bottle'
	b.	òmín	'brother'

Positional Licensing

- AGREE, etc., can't account for (5):
- (7) $AGREE([\pm ATR])$: Vowels in adjacent syllables must have the same value for $[\pm ATR]$. (Smolensky 2006)

(8)

	$/b \hat{\eta} \hat{\sigma} + n \hat{i} /$	AGREE	$IDENT([\pm ATR])$
	a. b <mark>òŋóní</mark>	*!	*
×	b. b <mark>òŋóni</mark> ́		**
	c. bờŋóni	*!	

- No iterativity parameters in the OT constraints.
- Despite similarities, typical harmony and Lango have fundamentally different motivations.
- The iterativity parameter common among rule-based theories is misguided.

- Smolensky (2006) accounts for the direction and possibility of harmony, but not the noniterativity.
- Harmony is driven by AGREE (7).
- Six other constraints block harmony and derive progressive/regressive harmony as appropriate; see Appendix.
 - In Tableaux below, PROGRESSIVE HARMONY and REGRESSIVE HARMONY stand in for these constraints.
- AGREE-based analysis can't account for (5).

- After assimilation, the suffix vowel shares its ATR feature with some root segment.
 - \Rightarrow Roots are "prominent positions which license more contrasts than other non-prominent positions" (Urbanczyk 2006:194; see also Steriade 1995, Beckman 1999).
- (9) LICENSE-[ATR]: $[\pm ATR]$ features must be linked to root segments. (cf. Zoll 1998b, Crosswhite 2000; see also Walker 2004)
 - I.e., a contrast based on $[\pm ATR]$ is only permitted in roots.
 - Spreading in either direction can be sufficient.

	/bờŋó + ní/	RegHarm	LIC-[ATR]	$IDENT([\pm ATR])$
	a. bờŋóní		*!	
Ĩ	🗿 b. bờŋón <mark>í</mark>			*
	c. bòŋóní			**!
	d. b <mark>ờŋ</mark> źní	*!		*

- A noniterative rule works just as well for this form.
- Polysyllabic suffixes:

(10)

- <u>Noniterative rule</u>: Only first suffix vowel should harmonize.
- Licensing: All suffix vowels must harmonize in order to be licensed.

- This is consistent with Licensing, but not a noniterative rule.
- Also: harmony isn't foot-bound. (Plus, stress is roughly root initial.)

(12)

$/c\dot{e}g + \epsilon r\hat{\epsilon}/$	ProgHarm	LIC-[ATR]	$IDENT([\pm ATR])$
a. c <mark>è</mark> gérê		*!(*)	
b. c <mark>ègér</mark> ê		*!	*
c. c <mark>ègérê</mark>			**
d. cègérê	*!		*

• "Harmony" in Lango isn't simply noniterative spreading. It's spreading with a purpose, and the Licensing requirement is typically met after one "iteration" of spreading.

Alternatives

- Positional Faithfulness (Beckman 1999) can block harmony on initial Vs:
- (13) IDENT[ATR]-[σ : Corresponding segments in root-initial syllables have identical values for [\pm ATR].
 - Now monosyllabic roots can't be produced:

$/p\mathbf{i} + w\mathbf{u}'$ 'for you'	Ident[ATR]-[σ	RegHarm	AGREE
🚊 a. píw <mark>ú</mark>			*
(B) b. píwú	*!		
c. píwú		*!	

• Positional Faithfulness predicts $m \partial t \partial k \partial \hat{e}$, not $m \partial t \partial k \partial \hat{e}$ 'cars' (5e).

- Noniterative tone spread/shift is common in tone.
- LOCAL (Myers 1997) limits tone shift to one syllable:
- (15) LOCAL: "If an input tone T has an output correspondent T', some edge of T must correspond to the edge of T'."
 - But one edge of ATR's domain is the same in the input and output, regardless of the extent of spreading.
 - Another version of LOCAL (Yip 2002):
- (16) LOCAL: "An output tone cannot be linked to a TBU that is not adjacent to its [input] host."
 - I.e., ATR spreading by one vowel in either direction is fine.
 - This fails with polysllabic suffixes (11), e.g. c e g e r e 'to be closed': spreading by two syllables.
 - Only Licensing permits flexibility in the size of the harmonizing domain.
 - Positional Faithfulness and LOCAL too rigidly impose size requirements.

Conclusion

- Lango $[\pm ATR]$ harmony holds between root-final and suffix vowels.
- A standard harmony rule turned noniterative seems appealing.
- A Licensing account within OT is superior.
- On close inspection, assimilation in Lango and typical harmony have distinct motivations.
- (Non)iterativity is epiphenomenal: different motivations, different analyses—not two sides of the same coin, as an iterativity parameter suggests. Our analyses need not mention (non)iterativity.
- Perhaps other apparently noniterative phenomena (e.g. umlaut and metaphony) have other driving or limiting factors such as attraction to prominence. (McCormick 1981, Chung 1983, Flemming 1994, Walker 2004, Kaplan 2006)

References

- Archangeli, Diana & Douglas Pulleyblank (1994) Grounded Phonology. Cambridge, MA: MIT Press.
- Baković, Eric (2000) Harmony, Dominance, and Control. Ph.D. thesis, Rutgers University.
- Beckman, Jill N. (1999) Positional Faithfulness. London and New York: Routledge.
- Chung, Sandra (1983) Transderivational Relationships in Chamorro Phonology. Language **59**: 35–66.
- Cole, Jennifer S. & Charles Kisseberth (1995) Nasal Harmony in Optimal Domains Theory, ROA-49 http://roa.rutgers.edu.
- Crosswhite, Katherine M. (2000) Length Neutralization and Vowel Lengthening in Orlec Čakavian. In Formal Approaches to Slavic Linguistics #8: The Philadelphia Meeting, Tracy Holloway King & Irina A. Sekerina, eds., vol. 45 of Michigan Slavic Materials, Ann Arbor: Michigan Slavic Publications.

- Flemming, Edward S. (1994) The Role of Metrical Structure in Segmental Rules. In Proceedings of NELS 24, vol. 1, Amherst, MA: GLSA.
- Itô, Junko & Armin Mester (1999) Realignment. In The Prosody-Morphology Interface, René Kager, Harry van der Hulst, & Wim Zonneveld, eds., 188–217, Cambridge, U.K.: Cambridge University Press.
- Jensen, John T. & Margaret Strong-Jensen (1976) Ordering and Directionality of Iterative Rules. vol. 100 of Janua Linguarium, 104–121, Conference on Rule Ordering, The Hague: Mouton.
- Kaplan, Aaron F. (2006) The Nature of Iterativity: Evidence from Lango, ms., University of California, Santa Cruz.
- Kirchner, Robert (1993) Turkish Vowel Harmony and Disharmony: An Optimality Theoretic Account, ROA-4 http://roa.rutgers.edu.
- Lombardi, Linda (1999) Positional Faithfulness and Voicing Assimilation in Optimality Theory. Natural Language and Linguistic Theory 17(2): 267–302.
- McCarthy, John & Alan Prince (1993) Generalized Alignment. In Yearbook of Morphology, 79–153.

McCarthy, John J. (2003) OT Constraints are Categorical. Phonology 20(1): 75–138.

- McCarthy, John J. (2004) Headed Spans and Autosegmental Spreading, ROA-685 http://roa.rutgers.edu.
- McCormick, Susan (1981) A Metrical Analysis of Umlaut. Cornell Working Papers in Linguistics 2: 126–137.
- Myers, Scott (1997) OCP Effects in Optimality Theory. Natural Language and Linguistic Theory 15: 847–892.
- Noonan, Michael (1992) A Grammar of Lango. Berlin, New York: Mouton de Gruyter.
- Padgett, Jaye (1995) Feature Classes. In University of Massachusetts Occasional Papers in Linguistics, Suzanne Urbanczyk Jill Beckman & Laura Walsh, eds., vol. 18, 385–420, Amherst: GLSA.
- Padgett, Jaye (1997) Partial Class Behavior and Nasal Place Assimilation. In Proceedings of the 1995 Southwestern Workshop Optimality Theory, Keiichiro Suzuki & Dirk Elzinga, eds., 145–183, Tucson, AZ: The University of Coyote Papers.

- Prince, Alan & Paul Smolensky (1993[2004]) Optimality Theory: Constraint Interaction in Generative Grammar, ms., Rutgers University, New Brunswick and University of Colorado, Boulder. Published in 2004 by Blackwell Publishers.
- Pulleyblank, Douglas (1996) Neutral Vowels in Optimality Theory: A Comparison of Yoruba and Wolof. Canadian Journal of Linguistics 41: 295–347.
- Smolensky, Paul (2006) Optimality in Phonology II: Harmonic Completeness, Local Constraint Conjunction, and Feature Domain Markedness. In *The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar*, Paul Smolensky & Géraldine Legendre, eds., vol. 2, chap. 14, 27–160, Cambridge, MA and London: The MIT Press.
- Steriade, Donca (1994a) Licensing by Cue, Ms, UCLA.
- Steriade, Donca (1994b) Positional Neutralization and the Expression of Contrast, Ms, UCLA.
- Steriade, Donca (1995) Underspecification and Markedness. In *Handbook of Phonological Theory*, John Goldsmith, ed., 114–174, Oxford: Blackwell.
- Urbanczyk, Suzanne (2006) Reduplicative Form and the Root-Affix Asymmetry. Natural Language and Linguistic Theory **24**(1): 179–240.

- Walker, Rachel (2000) Nasalization, Neutral Segments, and Opacity Effects. New York: Garland.
- Walker, Rachel (2004) Vowel Feature Licensing at a Distance: Evidence from Northern Spanish Language Varieties. In *Proceedings of the 23rd West Coast Conference on Formal Linguistics*, Benjamin Schmeiser, Vineeta Chand, Ann Kelleher, & Angelo J. Rodriguez, eds., 787–800, Somervile, MA: Cascadilla Press.
- Woock, Edith Bavin & Michael Noonan (1979) Vowel Harmony in Lango. In Papers from the 15th Annual Regional Meeting of the Chicago Linguistic Society, Paul R.
 Clyne, William F. Hanks, & Carol L. Hofbauer, eds., Chicago: Chicago Linguistic Society.
- Yip, Moira (2002) Tone. Cambridge: Cambridge University Press.
- Zoll, Cheryl (1998a) Parsing below the Segment in a Constraint-Based Framework. Stanford, CA: CLSI Publications.
- Zoll, Cheryl (1998b) Positional Asymmetries and Licensing, Ms., MIT ROA-282 http://roa.rutgers.edu.

Appendix

Summary of Constraints in Smolensky (2006); see original for formalizations.

- \mathbb{C}_1 : No [+ATR] spread from [-hi] source in closed σ .
- \mathbb{C}_2 : No regressive [+ATR] spread from a [-hi] source.
- \mathbb{C}_3 : No regressive [+ATR] spread from a [-front] V onto a [-hi] V in a closed σ .

```
e. \left. \right\} regulate [+ATR] spread
```

- $\begin{array}{l} \mathbb{C}_{X}: & \text{No regressive [-ATR] spread.} \\ \mathbb{C}_{Y}: & \text{No [-ATR] spread from a [+fr] vowel.} \end{array} \right\} regulate [-ATR] spread \\ \mathbb{C}_{Z}: & *[-ATR, +hi] \end{array}$
- Ranking: $\mathbb{C}_1, \mathbb{C}_2, \mathbb{C}_3, \mathbb{C}_X, \mathbb{C}_Y, \mathbb{C}_Z \gg \text{AGREE}$
- ♦ [+ATR]-spreading candidates win if they don't violate C_1 , C_2 , C_3 .
- ♦ [-ATR]-spreading candidates win if they don't violate \mathbb{C}_X , \mathbb{C}_Y , \mathbb{C}_Z .
- $\diamond\,$ Harmony is blocked if no harmonic candidate survives these constraints.