Serial versus Parallel Noisy HG Accounts of Eastern Andalusian Harmony

Aaron Kaplan University of Utah a.kaplan@utah.edu

May 28, 2021

- Noisy Harmonic Grammar: probabilistic implementations of Harmonic Grammar (Goldwater & Johnson 2003; Boersma & Pater 2016; Jesney 2007; Flemming 2017; Zuraw & Hayes 2017).
- Different implementations of NHG have different empirical properties (Hayes 2017).
 - Only one version of NHG respects harmonic bounding, e.g.
- That version is the only one that provides a satisfactory parallel account of optionality in Eastern Andalusian's ATR harmony (Kaplan 2019).

- Does this result change for a serial analysis of Eastern Andalusian?
 - The harmony-driving constraint requires serialism, so understanding NHG's properties in a serial framework is important.

- Computational implementations of a serial NHG account of Eastern Andalusian show that:
 - The same version of NHG that succeeds in parallel is the only one that succeeds serially.
 - Other versions fail in serialism for the same reason they fail in parallelism.

- Two implications:
 - Serial NHG inherits many of parallel NHG's properties.
 - Maintaining harmonic bounding and its consequences is important.

- The necessary pieces:
 - The data
 - e Harmony in serialism
 - Onstraints
 - The mechanics of NHG

Variable Harmony in Eastern Andalusian

- Data from Jiménez & Lloret (2007); Lloret & Jiménez (2009); Lloret (2018).
- /s/-aspiration (= deletion) causes laxing of word final vowel, which triggers [-ATR] harmony on the stressed syllable:

tesis	'tesi	'thesis'	nenes	'n <mark>ene</mark>	'babies'
tienes	'tj <mark>ene</mark>	'you have'	pesos	'p <mark>esə</mark>	'weights'
monos	'm <mark>ənə</mark>	'monkeys'	lejos	'l <mark>ɛ</mark> hɔ	'far'
bocas	ˈɔkæᢩ	'mouths'	asas	'ạsæ	'handles'

• Harmony on other vowels is optional...

Variable Harmony in Eastern Andalusian

• Nonfinal post-tonic vowels optionally harmonize in lockstep:

treboles	$\mathrm{tr}_{\mathbf{\epsilon}}\beta\mathrm{ol}_{\mathbf{\epsilon}}\sim\mathrm{tr}_{\mathbf{\epsilon}}\beta\mathrm{ol}_{\mathbf{\epsilon}}$	'clovers'
cómetelos	$\rm 'kometelo \sim \rm 'kometelo$	'eat them (for you)!'
	*'kəmɛtelə, *'kəmetɛlə	

 Likewise for pretonic vowels; post-tonic harmony is a prerequisite for pretonic harmony:

momentos	$mo'menta \sim mo'menta$	'instants'
relojes	$ m re'l_{bh\epsilon} \sim r\epsilon'l_{bh\epsilon}$	'watches'
monederos	$cn3\delta' ancm \sim cn3\delta' ncm$	'purses'
	*məne'ðɛrə, *monɛ'ðɛrə	
recógelos	$ m re'kahela \sim re'kahela \sim re'kahela$	'pick them'
	*rɛˈkəhelə	

• But high vowels do not undergo harmony:

crisis	'krisı	'crisis'
muchos	'mu ∫ ວ	'many'
ídolos	'iðolə \sim 'iðələ	'idols'
cojines	ko'hin $\epsilon \sim k_{ m o}$ 'hin ϵ	'pillows'
cotillones	koti' $z_{2}n\epsilon \sim k_{2}ti'z_{2}n\epsilon$	'cotillions'

Variable Harmony in Eastern Andalusian

• Words used in simulations:

- /kometelos/: coordinated post-tonic harmony
- /mone/deros/: coordinated pretonic harmony
- Motigones/: transparent high vowel
- (a) /re'kohelos/: interaction between pretonic and post-tonic harmony
- \bigcirc /'krisis/: stressed and final high vowels

- For simplicity, derivations begin after /s/-aspiration; the input is /'kometelo/, not /'kometelos/, e.g.
- Only one vowel can harmonize on any step.
- There are arguments for gradual feature change (McCarthy 2008), but I assume fell-swoop harmony: a vowel becomes fully harmonic on one step:
- 'kometelb \rightarrow 'kbmetelb (\rightarrow 'kbmetelb \rightarrow 'kbmetelb)
 - Unstressed vowels can harmonize in any order.

• HG analysis based on OT analyses by Jiménez & Lloret (2007); Lloret & Jiménez (2009); Lloret (2018); Walker (2011).

Core Constraints

- LICENSE([-ATR], σ́): for [-ATR] that appears in the stressed syllable, assign +1 for each syllable that this feature appears in (Kaplan 2018a; Walker 2011).
 - This drives harmony, first on the stressed syllable, then possibly elsewhere.
 - Positive constraints require serialism (Kimper 2011).
- *[-ATR]: assign -1 for each vowel bearing [-ATR].

The Basic Idea

 $w(\text{LICENSE}) > w(*[-ATR]) \rightarrow \text{more harmony}$

• CRISPEDGE([-ATR], $\dot{\sigma}$, L): assign -1 for each syllable to the left of the stressed syllable with which it shares a [-ATR] feature (e.g. Ito & Mester 1999; Kaplan 2018b).

Pretonic Syllables

 $w(\text{LICENSE}) > w(*[-ATR]) + w(\text{CRISPEDGE}) \rightarrow \text{pretonic harmony}$

Other Relevant Constraints

- *[+hi, -ATR]: assign -1 for [I, v].
 Prevents high vowels from harmonizing: *[kpti'3pne]
- MAX(-ATR) (informal definition): assign -1 for a candidate with /s/-aspiration but no [-ATR] feature.
 - Ensures final laxing: *['kometelo], *['krisi]
- ANCHOR-R: assign -1 for a [-ATR] feature not associated with the rightmost vowel.
 - Ensures that final laxing always targets the final vowel: *['krisi]

/rekóhelos/	LICENSE 11	CRISPEDGE 0.25	$*[-ATR]_{11}$
a. re'kohel <mark>o</mark>			-1
(🖙) b. re'kəhelə	+2		-2
(INF) c. re'kəhɛlə	+3		-3
(🖙) d. rɛˈkəhɛlə	+4	-1	-4
e. rɛˈkɔhelə	+3	-1	-3

- Harmony on stressed syllable: w(*[-ATR]) < 2w(LICENSE)
- Post-tonic harmony:
 - w(LICENSE) > w(*[-ATR]) or
 - w(LICENSE) < w(*[-ATR])
- Pretonic Harmony:
 - w(LICENSE) > w(*[-ATR]) + w(CRISPEDGE) or
 - w(LICENSE) < w(*[-ATR]) + w(CRISPEDGE)

Constraint	Weight
*[–ATR]	11
LICENSE	11
CrispEdge	0.25
MAX(-ATR)	50
Anchor-R	100
*[+hi, -ATR]	40

Add noise to the computation of harmony scores at various levels (Hayes 2017):

/rekóhelos/	LICENSE 11	CRISPEDGE 0.25	$*[-ATR]_{11}$	Н
a. re'kohel <mark>ə</mark>			-1	-11
(☞) b. reˈkəhelə	+2		-2	0
(☞) c. reˈkəhɛlə	+3		-3	0
(☞) d. rɛˈkɔhɛlə	+4	-1	-4	-0.25
e. rɛˈkɔhelɔ	+3	-1	-3	-0.25

Add noise to the computation of harmony scores at various levels (Hayes 2017): constraint ("classical NHG"),

/rekóhelos/	LICENSE 11 +.5	$\begin{array}{c} \text{CrispEdge} \\ \text{0.252} \end{array}$	$*[-ATR]_{11} + .3$	Н	
a. re'kohel <mark>ə</mark>			-1	<u>_H</u> _	$\rightarrow -11.3$
(☞) b. reˈkəhelə	+2		-2	0-	→ 0.4
(☞) c. re'kəhɛlə	+3		-3	0-	→ 0.6
(☞) d. rɛˈkəhɛlə	+4	-1	-4	-0.25 -	→ 0.75
e. rɛˈkəhelə	+3	-1	-3	-0.25 -	→ 0.55

Add noise to the computation of harmony scores at various levels (Hayes 2017): constraint ("classical NHG"), cell,

/rekóhelos/	LICENSE 11	$\underset{0.25}{\text{CRISPEDGE}}$	$*[-\mathrm{ATR}]_{11}$	Н	
a. re'kohel <mark>ə</mark>	+.9	8	-1_{5}	<u>_H</u> -	$\rightarrow -10.5$
(IS) b. re'kəhelə	+2 +.5	7	-2_{5}	-0-	→ 2
(IN) c. re'kəhɛlə	+3 +0	+.6	-39	0-	→ 2.7
(☞) d. rɛˈkəhɛlə	+49	-1 +.7	$-4_{+.2}$	-0.25-	$\rightarrow -5.35$
e. rɛˈkəhelə	+3 +.2	-12	-3 + .6	-0.25-	$\rightarrow -1.25$

Add noise to the computation of harmony scores at various levels (Hayes 2017): constraint ("classical NHG"), cell, or candidate.

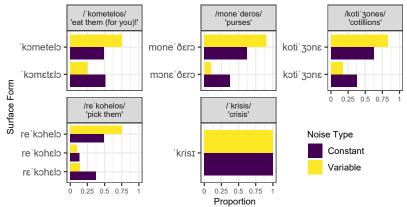
/rekóhelos/	LICENSE 11	CRISPEDGE 0.25	$*[-ATR]_{11}$	Н	
a. re'kohel <mark>ə</mark>			-1	-H_+.4	$\rightarrow -10.6$
(🖙) b. re'kəhelə	+2		-2	0 +.2	→ 0.2
(🖙) c. reˈkəhɛlə	+3		-3	<u></u>	$\rightarrow -0.8$
(☞) d. rɛˈkəhɛlə	+4	-1	-4	-0.25.3	$\longrightarrow55$
e. rɛˈkəhelə	+3	-1	-3	-0.25.4	→ 0.65

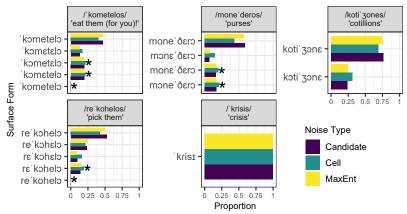
Also MaxEnt (Goldwater & Johnson 2003)

Only classical NHG accounts for Eastern Andalusian in parallel NHG (Kaplan 2018a; Kaplan 2019); also in serial NHG...

<u>Constant noise</u>: weights are perturbed once at the outset, fixing their values for the whole derivation.
 Step 1: w(C) + i
 Step 2: w(C) + i

Variable Noise: weights are perturbed anew at each step in the derivation.


Step 1: w(C) + iStep 2: w(C) + j


- Existing software (OTsoft (Hayes, Tesar & Zuraw 2013), OT-Help (Staubs et al. 2010), e.g.) doesn't support serial NHG.
- My own implementations, built in R (R Core Team 2020). Some details:
 - Noise was drawn from a normal distribution with mean of 0 and standard deviation of 1.
 - Negative weights were reverted to 0 (following Hayes (2017)).
 - In the event of tied winners, one is chosen at random.
 - Results from each implementation were aggregated over 10,000 iterations.
 - Weights supplied at the outset.

- Both constraint-level noise simulations produce the licit outputs.
 - Different frequency predictions, but no way to assess them.
- Cell- and candidate-level noise and MaxEnt all overgenerate, unavoidably producing illicit candidates.

Constraint-Level Noise

All and Only Attested Forms Produced

Candidate- and Cell-Level Noise and MaxEnt

* = unattested; those with near-zero frequencies (2 tokens) all come from cell-level noise

• Why do these fail?

/kˈəmetɛlə/	LICENSE	*[-ATR]
a. k'əmet <mark>ɛ</mark> lə	+3	-3
(🖙) b. k'əmɛtɛlə	+4	-4
(IS) c. k'əmetelə	+2	-2

- Candidate (a) is collectively harmonically bounded (Samek-Lodovici & Prince 1999):
 - $w(\text{LICENSE}) > w(*[-ATR]) \rightarrow H(b) > H(a) > H(c)$
 - $w(*[-ATR]) > w(License) \rightarrow H(c) > H(a) > H(b)$
 - $w(*[-ATR]) = w(\text{LICENSE}) \rightarrow H(a) = H(b) = H(c)$

- Candidate (a) is at least as well off one licit form, and therefore at least as likely to win.
 - <u>MaxEnt</u>: output probability is proportional to harmony.
 - <u>Candidate-level noise</u>: harmony is perturbed, so candidates with better harmony get a leg up.
 - <u>Cell-level noise</u>: weights are perturbed for each candidate. Weights favoring one candidate are likely to remain that way after noise.
- These unattested forms must be at least as common as an attested form.
- Similar situations arise with other words.

/k'əmetɛlə/	LICENSE	*[-ATR]
a. k'əmet <mark>ɛ</mark> lə	+3	-3
(☞) b. k'əmɛtɛlə	+4	-4
(IF) c. k'əmetelə	+2	-2

- Ideal situation for constraint-level noise.
- No combination of weights favors candidate (a).
- Candidate (a)'s only hope: tied weights—a vanishingly improbable outcome.
- The result: coordinated harmony on unstressed vowels.

Parallel NHG

/k'əmetɛlə/	LICENSE	*[-ATR]
a. k'əmet <mark>e</mark> lə	+3	-3
(🖙) b. k'əmɛtɛlə	+4	-4
(IS) c. k'əmetelə	+2	-2

- The parallel counterpart of this tableau just has more candidates. The collective harmonic bounding is the same.
- Constraint-level noise respects harmonic bounding, so it chooses only (b) or (c).
- Cell-level noise, candidate-level noise, and MaxEnt fail for exactly the same reasons.

- Harmonic bounding is important.
 - It imposes useful structure on the candidate set that NHG ignores at its peril.
 - If a licit output appears to be harmonically bounded, change the constraints, not harmonic bounding.

- Serial NHG is very similar to parallel NHG.
 - It inherits parallel NHG's properties regarding harmonic bounding.
 - The suitability of any version of NHG might be independent of parallel/serial choice.

- NHG with constraint-level noise provides a viable account of optionality in both parallel and serial frameworks.
 - Serialism: constraint-level noise allows coordination of harmony across multiple steps.
- Parallel NHG can be a rough guide to serial NHG's behavior.
- The greater power of other versions of NHG can be a liability.

Boersma, Paul & Joe Pater. 2016. Convergence properties of a Gradual Learning Algorithm for Harmonic Grammar. In John J. McCarthy & Joe Pater (eds.), *Harmonic grammar and harmonic serialism*, 389–434. Bristol, CT: Equinox.

Flemming, Edward. 2017. Stochastic harmonic grammars as random utility models. Poster presented at AMP 2017.

Goldwater, Sharon & Mark Johnson. 2003. Learning OT constraint rankings using a maximum entropy model. In *Proceedings of the workshop on variation within optimality theory*, 113–122. Stockholm University.

Hayes, Bruce. 2017. Varieties of noisy HG. In Karen Jesney, Charlie O'Hara, Caitlin Smith & Rachel Walker (eds.), *Proceedings of AMP 2016*. Washington, DC: Linguistic Society of America.

Hayes, Bruce, Bruce Tesar & Kie Zuraw. 2013. OTSoft 2.5. software package, http://www.linguistics.ucla.edu/people/hayes/otsoft/.

Ito, Junko & Armin Mester. 1999. Realignment. In René Kager, Harry van der Hulst & Wim Zonneveld (eds.), *The prosody-morphology interface*, 188–217. Cambridge, U.K.: Cambridge University Press.

Jesney, Karen. 2007. The locus of variation in weighted constraint grammars. Poster presented at the Workshop on Variation, Gradience and Frequency in Phonology. Stanford, CA: Stanford University. July 2007. Jiménez, Jesús & Maria-Rosa Lloret. 2007. Andalusian vowel harmony: Weak triggers and perceptibility. paper presented at the 4th Old World Conference in Phonology, Workshop on Harmony in the Languages of the Mediterranean, Rhodes, January 18-21, 2007.

Kaplan, Aaron. 2018b. Asymmetric crisp edge. In Ryan Bennett, Adrian Brasoveanu, Dhyana Buckley, Nick Kalivoda, Shigeto Kawahara, Grant McGuire & Jaye Padgett (eds.), Hana-bana: A festschrift for Junko Itô and Armin Mester. Santa Cruz, CA: Department of Linguistics, University of California, Santa Cruz. https://itomestercelebration.sites.ucsc.edu/.

Kaplan, Aaron. 2018a. Positional licensing, asymmetric trade-offs, and gradient constraints in Harmonic Grammar. *Phonology* 35. 247–286.

References IV

Kaplan, Aaron. 2019. Noisy HG models of Eastern Andalusian harmony. Talk presented at the *Sixteenth Old World Conference in Phonology*, University of Verona, Verona, Italy, January 18.

Kimper, Wendell. 2011. Competing triggers: Transparency and opacity in vowel harmony. Amherst, MA: University of Massachusets, Amherst PhD thesis.

Lloret, Maria-Rosa. 2018. Andalusian vowel harmony at the phonology-morphology interface. Talk presented at the 2015 Old World Conference on Phonology, London, January 12-14.

Lloret, Maria-Rosa & Jesús Jiménez. 2009. Un análisis *óptimo* de la armonía vocálica del andaluz. *Verba* 36. 293–325.

McCarthy, John J. 2008. The gradual path to cluster simplification. *Phonology* 25. 271–319.

References V

- R Core Team. 2020. *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Samek-Lodovici, Vieri & Alan Prince. 1999. Optima. ROA-363, Rutgers Optimality Archive, http://roa.rutgers.edu.
- Samek-Lodovici, Vieri & Alan Prince. 1999. Optima. ROA-363, Rutgers Optimality Archive, http://roa.rutgers.edu.
- Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John J. McCarthy & Joe Pater. 2010. OT-help 2.0. Software package. Amherst, MA: University of Massachusets Amherst.
- Walker, Rachel. 2011. *Vowel patterns in language*. New York: Cambridge University Press.
- Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: An argument for Harmonic Grammar. *Language* 93(3). 497–548.